PVP 19

ENGINEERING MATHEMATICS-III (PDE, COMPLEX VARIABLES &TRANSFORM TECHNIQUES)

Course		19BS1301	Year	II	Semester	Ι			
Code									
Course Category		Basic Sciences course	Basic Sciences Branch course		Course Type	Theory			
Cred	dits	3	L-T-P	3-0-0	Prerequisites	Nil			
Continuous Internal		30	Semester End	70	Total Marks:	100			
Evaluation:			Evaluation:						
	Course Outcomes								
Aft	After successful completion of the course, the student will be able to								
CO1	Determ	nine Laplace transfo	rm and inverse	Laplace trans	forms of given:	function(s).			
CO2	Develop a Fourier series in terms of sine and cosine of a given function.								
CO3	Find out Fourier sine and cosine transforms.								
CO4	Determine complex potential function, evaluate integrals by applying Cauchy's integral formula and construct series expansions of complex functions.								
CO5	Apply method of separation of variables to find the solution of wave, heat, Laplace equations with given boundary conditions.								

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)														
	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2	2	
CO2	3	2										2	2	
CO3	3	2										2	2	
CO4	3	2										2	2	
CO5	3	2										2	2	

UNIT	Contents					
No.		COs				
I	Laplace Transforms & Inverse Laplace Transforms 12 hrs					
	Definition of Laplace transform, properties of Laplace transforms, transforms of derivatives,					
	transforms of integrals, multiplication by t^n , division by t, unit step function, unit impulse					
	function. Inverse Laplace transforms by partial fractions, convolution theorem (All					
	theorems/properties without proofs)					
п	Fourier Series 7 hrs					
	Fourier series, Dirichlet's conditions, functions of any period, odd and even functions - half	CO2				
	range series. (All theorems/properties without proofs)					
III	Fourier Transforms 6 hrs					
	Fourier integrals, Fourier cosine and sine integrals, Fourier transform, sine and cosine					
	transform. (All theorems/properties without proofs)					

	Complex Variables 12 hrs					
IV	Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding					
	harmonic conjugate. Cauchy theorem, Cauchy integral formula, Taylor's series, Laurent's					
	series. (All theorems/properties without proofs)					
v	Applications of Partial Differential Equations7 hrs					
	Classification of second order partial differential equations, method of separation of variables,					
	solutions of one dimensional wave equation, one dimensional heat equation and two					
	dimensional Laplace's equation in cartesian coordinates.(All theorems/properties without					
	proofs)					

Learning Recourse(s)

Text Book(s)

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

Reference Book(s)

1. N.P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi Publications, 2008.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/105/111105123/
- 2. https://www.nptel.ac.in/courses/111/105/111105134/
- 3. https://www.nptel.ac.in/courses/111/105/111105093/